skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bonilha, Leonardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Introduction Intracerebral hemorrhage represents 15 % of all strokes and it is associated with a high risk of post-stroke epilepsy. However, there are no reliable methods to accurately predict those at higher risk for developing seizures despite their importance in planning treatments, allocating resources, and advancing post-stroke seizure research. Existing risk models have limitations and have not taken advantage of readily available real-world data and artificial intelligence. This study aims to evaluate the performance of Machine-learning-based models to predict post-stroke seizures at 1 year and 5 years after an intracerebral hemorrhage in unselected patients across multiple healthcare organizations. Design/methods We identified patients with intracerebral hemorrhage (ICH) without a prior diagnosis of seizures from 2015 until inception (11/01/22) in the TriNetX Diamond Network, using the International Classification of Diseases, Tenth Revision (ICD-10) I61 (I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, and I61.9). The outcome of interest was any ICD-10 diagnosis of seizures (G40/G41) at 1 year and 5 years following the first occurrence of the diagnosis of intracerebral hemorrhage. We applied a conventional logistic regression and a Light Gradient Boosted Machine (LGBM) algorithm, and the performance of the model was assessed using the area under the receiver operating characteristics (AUROC), the area under the precision-recall curve (AUPRC), the F1 statistic, model accuracy, balanced-accuracy, precision, and recall, with and without seizure medication use in the models. Results A total of 85,679 patients had an ICD-10 code of intracerebral hemorrhage and no prior diagnosis of seizures, constituting our study cohort. Seizures were present in 4.57 % and 6.27 % of patients within 1 and 5 years after ICH, respectively. At 1-year, the AUROC, AUPRC, F1 statistic, accuracy, balanced-accuracy, precision, and recall were respectively 0.7051 (standard error: 0.0132), 0.1143 (0.0068), 0.1479 (0.0055), 0.6708 (0.0076), 0.6491 (0.0114), 0.0839 (0.0032), and 0.6253 (0.0216). Corresponding metrics at 5 years were 0.694 (0.009), 0.1431 (0.0039), 0.1859 (0.0064), 0.6603 (0.0059), 0.6408 (0.0119), 0.1094 (0.0037) and 0.6186 (0.0264). These numerical values indicate that the statistical models fit the data very well. 
    more » « less